24 research outputs found

    Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning

    Full text link
    Text-based adventure games provide a platform on which to explore reinforcement learning in the context of a combinatorial action space, such as natural language. We present a deep reinforcement learning architecture that represents the game state as a knowledge graph which is learned during exploration. This graph is used to prune the action space, enabling more efficient exploration. The question of which action to take can be reduced to a question-answering task, a form of transfer learning that pre-trains certain parts of our architecture. In experiments using the TextWorld framework, we show that our proposed technique can learn a control policy faster than baseline alternatives. We have also open-sourced our code at https://github.com/rajammanabrolu/KG-DQN.Comment: Proceedings of NAACL-HLT 201

    Language Learning in Interactive Environments

    Get PDF
    Natural language communication has long been considered a defining characteristic of human intelligence. I am motivated by the question of how learning agents can understand and generate contextually relevant natural language in service of achieving a goal. In pursuit of this objective, I have been studying Interactive Narratives, or text-adventures: simulations in which an agent interacts with the world purely through natural language—"seeing” and “acting upon” the world using textual descriptions and commands. These games are usually structured as puzzles or quests in which a player must complete a sequence of actions to succeed. My work studies two closely related aspects of Interactive Narratives: operating in these environments and creating them in addition to their intersection—each presenting its own set of unique challenges. Operating in these environments presents three challenges: (1) Knowledge representation—an agent must maintain a persistent memory of what it has learned through its experiences with a partially observable world; (2) Commonsense reasoning to endow the agent with priors on how to interact with the world around it; and (3) Scaling to effectively explore sparse-reward, combinatorially-sized natural language state-action spaces. On the other hand, creating these environments can be split into two complementary considerations: (1) World generation, or the problem of creating a world that defines the limits of the actions an agent can perform; and (2) Quest generation, i.e. defining actionable objectives grounded in a given world. I will present my work thus far—showcasing how structured, interpretable data representations in the form of knowledge graphs aid in each of these tasks—in addition to proposing how exactly these two aspects of Interactive Narratives can be combined to improve language learning and generalization across this board of challenges.Ph.D

    Inherently Explainable Reinforcement Learning in Natural Language

    Full text link
    We focus on the task of creating a reinforcement learning agent that is inherently explainable -- with the ability to produce immediate local explanations by thinking out loud while performing a task and analyzing entire trajectories post-hoc to produce causal explanations. This Hierarchically Explainable Reinforcement Learning agent (HEX-RL), operates in Interactive Fictions, text-based game environments in which an agent perceives and acts upon the world using textual natural language. These games are usually structured as puzzles or quests with long-term dependencies in which an agent must complete a sequence of actions to succeed -- providing ideal environments in which to test an agent's ability to explain its actions. Our agent is designed to treat explainability as a first-class citizen, using an extracted symbolic knowledge graph-based state representation coupled with a Hierarchical Graph Attention mechanism that points to the facts in the internal graph representation that most influenced the choice of actions. Experiments show that this agent provides significantly improved explanations over strong baselines, as rated by human participants generally unfamiliar with the environment, while also matching state-of-the-art task performance

    Interactive Fiction Games: A Colossal Adventure

    Full text link
    A hallmark of human intelligence is the ability to understand and communicate with language. Interactive Fiction games are fully text-based simulation environments where a player issues text commands to effect change in the environment and progress through the story. We argue that IF games are an excellent testbed for studying language-based autonomous agents. In particular, IF games combine challenges of combinatorial action spaces, language understanding, and commonsense reasoning. To facilitate rapid development of language-based agents, we introduce Jericho, a learning environment for man-made IF games and conduct a comprehensive study of text-agents across a rich set of games, highlighting directions in which agents can improve

    Automated Storytelling via Causal, Commonsense Plot Ordering

    Full text link
    Automated story plot generation is the task of generating a coherent sequence of plot events. Causal relations between plot events are believed to increase the perception of story and plot coherence. In this work, we introduce the concept of soft causal relations as causal relations inferred from commonsense reasoning. We demonstrate C2PO, an approach to narrative generation that operationalizes this concept through Causal, Commonsense Plot Ordering. Using human-participant protocols, we evaluate our system against baseline systems with different commonsense reasoning reasoning and inductive biases to determine the role of soft causal relations in perceived story quality. Through these studies we also probe the interplay of how changes in commonsense norms across storytelling genres affect perceptions of story quality.Comment: AAAI-21 Camera Ready Versio
    corecore